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ABSTRACT 
 

The United States relies heavily on its space infrastructure for a vast number of applications, including 
communication, navigation, banking, national security, and research. However, NASA predicts that between now 
and 2030 orbital collisions will become increasingly frequent and could reach a runaway environment. This 
devastating scenario, also known as the Kessler Syndrome, has the potential to eventually destroy our assets in near-
Earth space and result in a debris cloud that could make space itself inaccessible. Preventing the Kessler Syndrome 
requires, in addition to an object removal technique, a groundbreaking new orbital dynamics framework that 
combines a comprehensive physics-based model of atmospheric drag with an accurate uncertainty quantification of 
orbital predictions. The IMPACT project (Integrated Modeling of Perturbations in Atmospheres for Conjunction 
Tracking), funded with over $5 Million by the Los Alamos Laboratory Directed Research and Development office, 
has the goal to develop such an integrated system of atmospheric drag modeling, orbit propagation, and conjunction 
analysis with detailed uncertainty quantification to address the space debris and collision avoidance problem. We 
discuss the components and capabilities of the IMPACT framework and show a short demonstration of modeling 
interface and resulting 3D visualizations. 
 

                                                             
1 Project PI: Josef Koller, jkoller@lan.gov 



 
1. INTRODUCTION 

 
The IMPACT (Figure 1) project, funded by an internal research and development process at Los Alamos National 
Laboratory (LANL), has the goal to develop an integrated modeling system for addressing current needs in space 
debris and conjunction analysis for resident space objects (RSO) in low-Earth orbit. Now with almost three years 
into the project, we have developed an integrated solution combining physics-based density modeling of the upper 
atmosphere between 120-700 km altitude, satellite drag forecasting for quiet and disturbed geomagnetic conditions, 
and conjunction analysis with non-Gaussian uncertainty quantification. We are employing several novel approaches 
including 

• a Raven-class observational facility for ground-based observations of space objects 
• physics-based density modeling and data assimilation for integrating density measurements with model 

forecasts similar to terrestrial weather prediction 
• drag coefficient modeling with Test Particle and Direct Simulation Monte Carlo methods to accurately 

account for changes in density, chemical composition, temperature and their effect on the drag coefficient 
and orbit propagation during geomagnetic storms 

• atmospheric density reconstruction using Satellite Orbit Tomography based on X-ray Computed 
Tomography from the medical imaging field 

• collision statistics and uncertainty quantification using full Monte Carlo sampling and importance sampling 
for collisional probabilities and allowing for non-Gaussian probability distributions 

• machine learning approach to enable a coupling between solar drivers and the upper atmosphere resulting 
in tremendous computational efficiency while preserving modeling accuracy  

 
Figure 1 IMPACT logo 

 
In the following subsection, we will describe in details some of the technological developments as part of the 
IMPACT project.  
 

2. GROUND BASED OBSERVATIONS 
 

   LANL is using a Raven-class telescope (0.35 m aperture C14 on a Paramount ME mount) to track satellites.  This 
observational facility is located at 2650 m altitude under dark skies about an hour from Los Alamos, NM.  We 
typically take several nights of observation around each New Moon, weather and wildfire permitting.  This provides 
both good metric accuracy for orbit determination and lightcurves for object characterization. The objects we 
observe for IMPACT are primarily: 
a) Satellites with accurately known orbits, which we use to characterize the accuracy of our metric determinations.  
These satellites include the GPS and WAAS constellations, geodesy satellites, and satellites carrying on-board GPS 
receivers. 
b) Cubesats, many of which are similar in terms of mass, volume, shape, and surface materials and hence are good 
test particles for looking at atmosphere-induced variation in drag.  We also observe other LEO satellites that have 
size/shape/mass information available. 
c) Objects in highly eccentric orbits that dip into the atmosphere at perigee.  The drag perturbation over an orbit for 
one of these objects is dominated by the atmosphere at the geographic location and altitude of the perigee pass.  
Rocket bodies in GTO are numerous and particularly useful, since they tend have known physical characteristics.  
We produce light-curves from our observations in order to derive the spin-states of the objects, which affect the 
average frontal area around the time of perigee. 
 



We have also observed debris from satellite collisions and the Breeze-M explosion. These observations include over 
300 different RSOs, including 26 GPS satellites and 76 rocket bodies. 
 

3.  PHYSICS-BASED DENSITY FORECAST MODELING 
 

A key element in improving satellite orbital predictions is the correct specification of the ionosphere-thermosphere 
environment, given that atmospheric density exerts significant drag over satellites. There are a number of models 
that can estimate the composition and density of the ionosphere-thermosphere, from empirical models to physics 
based models. Empirical models, such as the Mass Spectrometer and Incoherent Scatter (MSIS) [1] model, can 
provide an accurate estimation of current or past ionosphere-thermosphere density, based on a number of 
observations. Unfortunately, these types of models do not have predictive capabilities, that is, they provide a good 
nowcast but are often not suitable for a forecast. The IMPACT project uses a physics-based model, which has the 
potential to estimate a forecast of the ionosphere-thermosphere since they include the relevant physical behavior of 
the system. In particular, the project uses the Global Ionosphere-Thermosphere Model (GITM) [2] but the IMPACT 
framework is in able to switch between different models for comparative studies. 
 
3.1 Ionosphere-Thermosphere Models and Assimilation Method 

GITM is a physics-based three-dimensional model that solves the full Navier-Stokes equations for density, 
velocity, and temperature for a number of neutral and charged components. To account for solar activity, GITM uses 
at the moment the F10.7 solar flux, hemispheric power index (HPI) (which is derived from the 3-hour Kp), 
interplanetary magnetic field (IMF) data and solar wind velocity. GITM inherently allows for non-hydrostatic 
solutions to develop which allows for realistic dynamics in the auroral zones [2]. As with many of the physics-based 
models, GITM includes a number of assumptions and physical representation of the ionosphere-thermosphere that 
might not be accurate and introduce errors into the estimation of the density. This severely affects the quality of a 
density forecast. 

In order to improve the predictability of GITM, and provide a good forecast of the ionosphere-
thermosphere, we implement a data assimilation system based on the ensemble Kalman filter (EnKF) [3,4]. The 
EnKF uses an ensemble of model simulations to approximate the probability distribution of the model, as well as the 
covariance matrix. The main advantages of the EnKF are the ease of implementation and the computational 
efficiency for non-linear models. In particular we use the localized ensemble transform Kalman filter (LETKF) [5], 
which is a localized version of the EnKF. The LETKF assimilates by local volume centered at each grid-point 
variable, where the area of the local volume depends on model dynamics and assumptions of correlations between 
model variables. Given the local nature of the LETKF, the algorithm is highly parallel since all grid-point variables 
can be assimilated simultaneously. 

 
3.2 Assimilation of Derived Density Fields 
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Figure 2: Example of data assimilation: (left) CHAMP observations over a 30 minute assimilation window; (right) 
assimilated state after combining CHAMP observations with GITM forecast. 
 



 
Figure 3: Left plot: daily averaged measured F10.7 (red line), ensemble average F10.7 from the assimilation of 
CHAMP neutral density observations (blue line) and ensemble standard deviation for F10.7 (blue dashed line). The 
oscillations in the estimated F10.7 seems to follow the day-night change seen by the CHAMP satellite. Right plot: 
ensemble average density field for October 21 2002 at 0800 hours UTC. 
 
To enhance the density estimation of GITM with data assimilation, we use derived density observations from the 
CHAllenging Minisatellite Payload (CHAMP) [6,7] and Gravity Recovery and Climate Experiment (GRACE) [8]  
missions. Both mission satellites have GPS and accelerometer data that are processed to estimate a neutral density 
field [9]. Figure 2 shows an example of assimilating a 30 minute observational window into the GITM forecast.  
Given the scarcity of the data, it is challenging to constrain the whole model field. To address this issue, the 
assimilation is used to estimate both model variables and key model parameters that influence the global evolution 
of the model. To select the most relevant model parameter(s), a sensitivity study was performed a reveled that a key 
parameter is F10.7 index. This result is consistent with the physical representation of the F10.7 index within the 
model, since it is being used as a proxy for solar activity. The F10.7 index is not strictly an independent input 
parameter for the model, since it’s a measured index. Therefore, the assimilation will “calibrate” this index by 
adding a correction provided by the data assimilation. That is, the assimilation estimates δF10.7 for the model input 
index in the following way, 

where Fm
10.7 is the model index used by GITM, and F10.7 is the observed index. In this formulation, the correction to 

F10.7 is actually taking into account model bias and trying to correct it using data assimilation. 
 
Figure 3 shows the daily averaged measured F10.7 value (red line), the ensemble average of the estimated F10.7 
(blue line) using data assimilation with CHAMP data, as well as the ensemble standard deviation of F10.7. All index 
values are valid for October 21-31 2002. The estimated F10.7 value (blue line) is oscillating in accordance with the 
day-night position of the CHAMP satellite, indicating that the assimilation is correcting an 
overestimation/underestimation, suffered by the GITM model, through the F10.7 index. The left plot shows the 
ensemble average neutral density estimation for October 21 2002 at 0800 hours UTC. 
The assimilation results indicate that using data assimilation can reduce the forecast error of the model. Furthermore, 
the model bias can be corrected through the calibration of key model parameters through data assimilation. Other 
key parameters that influence other fields and properties of the mode, such as temperature, composition, etc., will be 
explored and included for calibration in the data assimilation. Initial condition and boundary conditions are also a 
concern for the model simulation, and will be addressed in the assimilation scheme as well. 
 

4. DRAG COEFFICIENT MODELING 
 

Drag is the largest source of uncertainty in the orbital trajectories of satellites in low Earth orbit (LEO). The 
acceleration on a satellite due to drag,  a


D , is defined by [10] 

Fm
10.7 = F10.7 + �F10.7 (1)
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where r  is the local atmospheric mass density, CD is the satellite drag coefficient, A is the projected area of the 
satellite normal to the velocity vector, m is the satellite mass, and vrel is the relative velocity between the satellite and 
the co-rotating atmosphere. For artificial satellites, the primary source of drag acceleration uncertainty stem from 
inadequate knowledge of r  and CD. 

Atmospheric mass densities are often inferred from the orbital decay of satellites by using fixed or fitted drag 
coefficients [11,12];  however, the use of such drag coefficients introduces biases into the inferred mass densities 
[1]. These biases can be partially removed by using physical drag coefficients computed based on the momentum 
exchange between atmospheric particles and the satellite surface. The vast majority of LEO satellites orbit in free 
molecular flow where intermolecular collisions between atmospheric particles can be neglected. In such conditions, 
the drag coefficients for satellites with simple convex geometries have closed-form solutions [13–15]. A numerical 
method, such as Test Particle Monte Carlo (TPMC), is required to accurately calculate drag coefficients for satellites 
with complicated concave geometries. At lower altitudes, where the free molecular flow assumption breaks down, a 
rarefied gas dynamic technique that accounts for intermolecular collisions, such as Direct Simulation Monte Carlo 
(DSMC), is required [16].  

Physical drag coefficients are dependent on a variety of atmospheric and satellite properties, including: 
atmospheric translational temperature, satellite surface temperature, relative velocity between the satellite and the 
co-rotating atmosphere, atmospheric composition, satellite surface composition, and, most importantly, the gas-
surface interaction (GSI) [13,15]. The GSI is generally controlled by one or more momentum or energy 
accommodation coefficients, depending on the GSI model. One of the simplest GSI models, Maxwell’s model, is 
not dependent on accommodation coefficients. Instead, Maxwell’s model splits the population of reflected particles 
into a fraction, e, that is reflected specularly, while the remaining portion, 1-e, are diffusely reflected. Recently, we 
have recently shown in [17] that Maxwell’s model is incapable of matching fitted drag coefficients as a function of 
altitude. Two more sophisticated GSI models are diffuse reflection with incomplete accommodation (DRIA) [18] 
and the Cercignani-Lampis-Lord (CLL) model [19]. The DRIA model has been applied in satellite drag coefficient 
modeling for nearly 50 years; however, the CLL model was only recently applied to satellite drag coefficient 
modeling for first time by our group [17]. 

We have developed closed-form solutions [17]  for simple convex geometries such as a sphere and flat plate for 
use with the CLL GSI model. Closed-form solutions were developed by fitting analytic expressions (modified from 
the original Schaaf and Chambre [13] solutions) to DSMC simulations with NASA’s DAC [20] that were sampled 
from the global parameter space using Latin Hypercube sampling. These CLL closed-form solutions fit the DAC 
simulations within ~0.5% of the global parameter space. 

Decades of work by Moe et al. [21–25] has shown that satellite surfaces are likely covered by varying levels of 
atomic oxygen. The atomic oxygen adsorbate changes the nature of the GSI, specifically, the effective energy 
accommodation coefficient, a in the DRIA model, when compared to particles interacting directly with a clean 
spacecraft surface. Pilinski et al. [26] was the first to fit the variation of a as a function of altitude with a Langmuir 
isotherm dependent on the partial pressure of atomic oxygen, PO; however, their original model had several 
deficiencies, including a  going to zero as PO goes zero. Walker et al. [17] and Pilinski et al. [27] have improved 
upon this deficiency by computing a as a weighted sum of unit accommodation (aads - 1)due to the adsorbate 
covered surface) and the energy accommodation coefficient of the clean satellite surface, aads,  based on Goodman’s 
formula [28]  

α = (1−θ )α srf +θα ads

α srf =
2.4µ
(1+ µ)2

 

 
We compared CLL and DRIA GSI models [17] while including the effects of atomic oxygen adsorption and 

found that both models can match fitted drag coefficients [29] equally well below ~500 km altitude. They also found 
larger (greater than ~20%) variations in the drag coefficients of simple geometries between solar minimum and solar 



maximum, confirming previous results from Moe et al. [22]. We investigated also in [17] the differences in drag 
coefficients computed using NRLMSISE-00 [1] and Global Ionosphere-Thermosphere Model (GITM) [2] 
atmospheric properties. At solar maximum, minor drag coefficient discrepancies of ~3% were found; however, 
much larger differences (up to ~11%) were found during solar minimum. 

More recently, we developed a response surface model (RSM) technique [30] for drag coefficient modeling. 
The method was validated for a sphere and then extended to the more realistic case of the GRACE satellite. 
Comparison of the original TPMC training simulations and the RSM predictions show errors of ~0.25% for the 
sphere and ~0.7% for GRACE. We compared in [31] Langmuir, Temkin, and Freundlich adsorption models and 
showed that the Temkin and Freundlich models match fitted drag coefficients better and both low and high altitudes. 
Furthermore, both adsorption models alleviate some of the physical deficiencies present in the Langmuir model, 
such as constant adsorption energy and monolayer adsorption. 
 

5. ATMOSPHERIC DENSITY RECONSTRUCTION 
 
The ground-based tracking observations are used to estimate the orbital state and drag ballistic coefficient of a 
number of satellites. By analyzing the change in the satellites’ orbits over time, one can estimate the atmospheric 
neutral density, in the form of corrections to an assumed density model. This approach is often called a Dynamic 
Calibration of the Atmosphere (DCA) in the literature [10]. This “nowcast” density estimate can then be fed into the 
data assimilation described above to provide better physics-based density forecasts. 
 
We have developed a new DCA method called Satellite Orbit Tomography, which was originally inspired by X-ray 
computed tomography. Here, rather than using the decay in X-ray intensity, we use the decay in orbital specific 
mechanical energy (ξ). Shoemaker et al [32] describes the mathematical formulation, and Shoemaker et al [33] gives 
simulation results of an operationally realistic scenario. The method is outlined as follows: 

• Identify a set of target satellites for tracking, nominally those that are inactive (e.g. debris, rocket bodies). 
Track each target over a span of time (>days) to build up estimates of the position, velocity, and drag 
ballistic coefficient (β). In the simulations considered to date, we have used a Constrained Admissible 
Region Multiple Hypothesis Filter (CAR-MHF) [34–36] to estimate these states based on measured angles 
and angle-rates. 

• Remove bias in the estimated β introduced by global errors in the assumed density model used in the CAR-
MHF. This is done by including at least some tracking targets that have fairly well-modeled β, and 
comparing their modeled β with that estimated by the CAR-MHF. This approach also leverages the drag 
coefficient modeling described above: given the published information on a satellite’s shape and mass, we 
are able to sufficiently model β. 

• Using a given satellite’s estimated position and velocity at one time (t1), and then again at a later time (t2), 
calculate the decay in ξ using the osculating orbit states at those times. The time span Δt = t2 - t1 should be 
long enough to observe the decay signal above the measurement noise, yet short enough to recover some 
time-resolved information in the density model. Our simulations have used Δt of 48 hours, but a lower limit 
of 24 hours is feasible given the expected accuracy of our ground-based tracking system and the likely 
revisit rate (~1 to 2 passes per night) for our mostly LEO targets. 

• Using the measured decay in ξ from the set of targets, solve for a spatially-resolved scalar correction (s) to 
the assumed density model. The correction factor s is defined in a grid; we have used grids spanning 300 to 
500 km altitude, with 100 km altitude spacing and 20 deg spacing in latitude and longitude. In general, the 
problem is underdetermined (there are more grid elements than target satellites) and ill-posed (most 
satellites do not pass through each grid element). Thus, we use Tikhonov regularization to stabilize the 
solution, with a spatial smoothness constraint on the solved-for s field.  

 
Our most recent simulations use actual resident space objects from the publically available catalog, and assume a 
single ground site at Fenton Hill, NM. Using only 40 targets and having suitable visibilities from this single ground 
site, we are able to reconstruct the time-averaged, yet spatially resolved, density field over 48 hours to within 
approximately 10%. These results also assume reasonable orbit estimation errors, and that each satellite’s assumed 
ballistic coefficient β will have zero-mean error with 1-σ standard deviation of 10%. The satellite orbit tomography 
approach has some practical advantages over typical weighted least-squares approaches, such as allowing easy 
density model specification i.e. not requiring Jacobian matrices that describe the sensitivity of the density model 
dynamics to the states. 
 



6. MACHINE LEARNING FOR FAST DENSITY FORECASTING 
 
Given the significant computational expense of a full physics-based simulation of the spatial variation of the 
atmospheric density profile, there is a need for a rapidly computable model approximating this profile. Our goal is to 
apply machine-learning methods to construct such a model, enabling estimation of the density profile based on 
current measurements of physical parameters such as solar activity and terrestrial magnetic field. Our initial attempts 
to learn a model based on historical point-measurements of atmospheric density from instrumented satellites (e.g. 
CHAMP and GRACE) showed that the spatial sampling density of available data is entirely inadequate for such a 
task. Our current approach, therefore, is to construct a computationally cheap surrogate model learned from 
simulations produced by the GITM code; this work is still in progress. Our initial task has been the construction of a 
low-dimensional parameterization of the density profile; given the difficulty of directly estimating a full, high-
dimensional representation of the profile, a regression model will be constructed to estimate the low-dimensional 
parameterization from the available physical measurements. While spherical harmonics are a very widely used basis 
on which to represent these profiles, we are currently investigating the use of a basis derived from our training data 
(i.e. a set of GITM simulations) via Principal Component Analysis (PCA).  
 

7. UNCERTAINTY QUANTIFICATION 
 

Our goal is to compute collision probabilities that account for uncertainty at each stage of our modeling procedure. 
To be accurate, a collision probability must necessarily incorporate uncertainty from observations, density modeling 
and forecasting, drag estimation, and other sources. In order to combine uncertainty across these sources, we favor 
Monte Carlo-based methods. 
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Figure 4:  (left) Gaussian approximations to Monte Carlo samples for a simulated example. (middle) Mixture of 
Gaussian approximation to Monte Carlo sample from a simulated example. (right) The yellow and green points 
show 100 importance sampled points using the two-stage procedure. This small sample produced a very accurate 
estimate of the probability when compared to a brute force simulation of 9,000,000 pairs.  
 
The recent FORTE/Meteor close approach on 22 June 2013 provided an opportunity to test a basic Monte Carlo 
strategy. First, we sampled ten GITM densities from the distribution of possible densities. Next, we sampled 100 
satellite state vectors from the distribution induced by observations of the two satellites made before the close 
approach.  These state vector samples were randomly paired with a sampled GITM density and the pair was 
propagated to close approach. At the time of close approach, we approximated the distribution of the positions with 
a simple Gaussian and used this to calculate the probability of collision. This method required relatively few 
simulations and incorporated two important sources of uncertainty. More uncertainty sources could be incorporated 
very easily (we calculated a best fit drag coefficient, but weren’t able to compute uncertainty at the time), although 
this would likely require a larger set of simulations.  Figure 4 (left) shows a fit based on a similar simulated close 
approach. 
 
A simple extension of the previous method is the use of a mixture of Gaussian model for the positions at close 
approach. This collision probability would be more accurate since the mixture model would be a better 
representation of the final position uncertainty. The calculation is a straightforward extension of the single Gaussian 
case. One drawback is that this method would require a larger set of simulations in order to accurately estimate the 
mixture model. Figure 4 (middle) shows the mixture of Gaussian fit to the same simulation as the figure on the left. 
Notice that this fit is better at capturing the tails and the overly dense central region. 



 
We are also working on an importance sampling methodology for computing collision probabilities with reduced 
simulation costs. Importance sampling is a Monte Carlo method that draws a biased sample that is weighted to 
produce the correct expectations. Particularly in the case of small probabilities, this technique can be used to reduce 
the variance of an estimate, and therefore the number of samples required. We developed a two-stage procedure. In 
the first stage a raw Monte Carlo sample is drawn from all of the uncertainty sources. The results of this stage are 
analyzed to find regions of the original distribution that produce close approaches and the second stage samples 
directly from these regions.  Figure 4 (right) shows the results of the methodology applied to the simulations shown 
in figures on the left and middle. The second stage used 100 simulations to accurately estimate the collision 
probability when compared with a brute force simulation. 
 

8. MODEL INTEGRATION AND VISUALIZATIONS 
 

In order to coherently integrate these diverse models (Figure 5), plus alternative models to facilitate 
comparisons of model techniques and implementations, we have developed an integration tool. For this we chose the 
Python language for its rapid prototyping and its multilingual extensibility. Our tool, as open-source, pure-Python 
package called sysdevel [37], handles three aspects of this multi-model synthesis: 

 
1. unifying potentially disparate model data in a scalable and malleable way, 
2. providing a service framework for plotting and visualizing data in a web browser, 
3. extending the Python build system to include external library dependencies, unit testing, and automatic 

documentation to ease distribution of collaborators who may use differing compute environments. 
 
The sysdevel build system extends the built-in Python distutils package to recursively build sub-packages that each 
build one of our models with a normal 'python setup.py build' call. This then, for example, descends into 
our GITM sub-package like a recursive 'make' call. It locates GITM's MPI and HDF5 library dependencies and the 
proper Fortran compiler, fetching and installing them if any are missing by utilizing CMake-style configuration files 
in sysdevel. Finally it creates a native executable for use in a cluster. Those familiar with Python will recognize that 
this is well beyond the normal distutils build process. 
 

 
Figure 5: IMPACT Flowchart illustrating the coupling between different models for atmospheric density, drag, 

propagation, observations, and uncertainty quantification. 



 
Within the IMPACT source tree, one of our sub-packages is labeled 'website' and this handles the user interface over 
the web. Sysdevel provides a Javascript and PHP framework specifically for simulation configuration and results 
viewing. Using a plumbing metaphor (through jsPlumb [38]), the user graphically configures the simulation 
processing pipeline and chooses data plots of interest. These interactive results plots are displayed as soon as data is 
available. To minimize computation, we store intermediate results, so data from a duplicate configuration is 
available immediately unless caching is overridden. Because the framework communicates with the simulation 
using JSON over WebSockets, we were able to extend our UI (outside of sysdevel) to include a 3D visualization 
(built with Three.js [39]) of RSO tracks around the Earth, as seen in Figure 6, with relative ease. 
 
By far the most interesting portion of sysdevel is its model integration facility. With this, we build a script that acts 
as a server to the web interface or a direct command-line interface. Sysdevel combines our simulation models 
together using the Model-View-Controller pattern, which consists of data models (in our case, RSO objects), data 
controllers that manipulate those objects (our modeling processes), and data views that represent direct hooks to our 
plotting and visualization. Note the conflicting semantics for the word 'model' above – in the context of this well-
known software pattern; we will substitute the word 'object'. These objects are the cores of our model synthesis 
strategy. As our development process of IMPACT iterates from 1-to-1-conjunction analysis, expanding to all-to-all 
RSO collision detection is challenging but the additional complexities appear feasible. Our data object abstraction 
supports multiple data storage backends to allow for scalability of the analysis. Currently this consists of structured 
Hierarchical Data Format (HDF) files, but could also utilize a relational database. As we expand to cover more and 
more RSOs and over wider time scales, our storage performance needs grow drastically. We are currently 
considering graph databases to meet that need, and our abstraction layer makes that adjustment possible. 
 
We are not only concerned with scalability, but also malleability. We already have integrated some alternate models 
(such as MSIS for atmospheric density), but we want to easily include other alternatives throughout the pipeline 
without extensive integration work. To that end, sysdevel data objects are self-describing using built-in Python 
idioms. This feature allows us to simply alter our data object definition (by creating a new sub-class of the original 
Python data object) to also conform to the domain ontology of the new model, and the user is ready to go. Inside 
sysdevel, there is a great deal more complexity to map that change to the storage backend (hence our initial 
preference for HDF, which simplifies this mapping). 
 
Through these features of scalable and malleable data unification, simulation pipeline configuration and data 
visualization, and a comprehensive build system, our sysdevel integration package not only serves the needs of our 
IMPACT project, but also provides a general tool for other multi-model simulations that would otherwise require 
extensive effort to tie together. 
 

 
Figure 6: Screen snapshot of the visualization interface of the IMPACT framework. Satellite position is represented 

with a particle cloud indicating the positional uncertainty.  



 
 

9.  SUMMARY 
 

The IMPACT project, funded by Los Alamos National Laboratory with internal research and development funding, 
has developed an open source and flexible research framework for analyzing satellite conjunctions with modern 
physics-based atmospheric density models, drag coefficient analysis, a new atmospheric density reconstruction 
method, machine learning, and system based uncertainty quantification. We presented an overview of this project 
including some of the novel approaches applied to satellite conjunction analysis. We welcome future collaborations 
using the IMPACT framework. 
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